Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host.
نویسندگان
چکیده
Brucella species are gram-negative bacteria which belong to alpha-Proteobacteria family. These organisms are zoonotic pathogens that induce abortion and sterility in domestic mammals and chronic infections in humans known as Malta fever. The virulence of Brucella is dependent upon its ability to enter and colonize the cells in which it multiplies. The genetic basis of this aspect is poorly understood. Signature-tagged mutagenesis (STM) was used to identify potential Brucella virulence factors. PCR amplification has been used in place of DNA hybridization to identify the STM-generated attenuated mutants. A library of 288 Brucella melitensis 16M tagged mini-Tn5 Km2 mutants, in 24 pools, was screened for its ability to colonize spleen, lymph nodes and liver of goats at three weeks post-i.v. infection. This comparative screening identified 7 mutants (approximately 5%) which were not recovered from the output pool in goats. Some genes were known virulence genes involved in biosynthesis of LPS (lpsA gene) or in intracellular survival (the virB operon). Other mutants included ones which had a disrupted gene homologous to flgF, a gene coding for the basal-body rod of the flagellar apparatus, and another with a disruption in a gene homologous to ppk which is involved in the biosynthesis of inorganic polyphosphate (PolyP) from ATP. Other genes identified encoded factors involved in DNA metabolism and oxidoreduction metabolism. Using STM and the caprine host for screening, potential virulence determinants in B. melitensis have been identified.
منابع مشابه
Brucella melitensis and Mycobacterium tuberculosis depict overlapping gene expression patterns induced in infected THP-1 macrophages
Pathogens infecting mammalian cells have developed various strategies to suppress and evade their hosts’ defensive mechanisms. In this line, the intracellular bacteria that are able to survive and propagate within their host cells must have developed strategies to avert their host’s killing attitude. Studying the interface of host-pathogen confrontation can provide valuable information for defi...
متن کاملSurvival of a bacterioferritin deletion mutant of Brucella melitensis 16M in human monocyte-derived macrophages.
A bacterioferritin (BFR) deletion mutant of Brucella melitensis 16M was generated by gene replacement. The deletion was complemented with a broad-host-range vector carrying the wild-type bfr gene, pBBR-bfr. The survival and growth of the mutant, B. melitensis PAD 2-78, were similar to those of its parental strain in human monocyte-derived macrophages (MDM). These results suggest that BFR is not...
متن کاملPersister cells formation and expression of type II Toxin-Antitoxin system genes in Brucella melitensis (16M) and Brucella abortus (B19)
Background & Objective: Persister cells are defined as a subpopulation of bacteria that are capable of reducing their metabolism and switching to dormancy in stress conditions. Persister cells formation has been attributed to numerous mechanisms, including stringent response and Toxin-Antitoxin (TA) systems. This study aimed to investigate the hypothetical role of TA systems in...
متن کاملDisruption of the BMEI0066 gene attenuates the virulence of Brucella melitensis and decreases its stress tolerance
Brucella melitensis is a facultative intracellular pathogen. An operon composed of BMEI0066, which encodes a two-component response regulator CenR, and BMEI0067, which encodes a cAMP-dependent protein kinase regulatory subunit, has been predicted to exist in many bacterial species. However, little is known about the function of this operon. In order to characterize this operon and assess its ro...
متن کاملIdentification of the perosamine synthetase gene of Brucella melitensis 16M and involvement of lipopolysaccharide O side chain in Brucella survival in mice and in macrophages.
Brucella organisms are facultative intracellular bacteria that may infect many species of animals as well as humans. The smooth lipopolysaccharide (S-LPS) has been reported to be an important virulence factor of these organisms, but the genetic basis of expression of the S-LPS O antigen has not yet been described. Likewise, the role of the O side chain of S-LPS in the survival of Brucella has n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbes and infection
دوره 8 14-15 شماره
صفحات -
تاریخ انتشار 2006